Тэг: установка

Способы концентрирования

Методы концентрирования

Концентрирование сока – это процесс удаления определенной части воды из фруктовых, ягодных, овощных и травяных соков. Концентрирование сока в основном осуществляется в следующих целях:

  • снижение активности воды сока;
  • минимизация затрат на упаковку;
  • оптимизация хранения, транспортировки и обращения;
  • стабилизация сока.

Методы концентрирования фруктовых соков требуют тщательного выбора и глубокого понимания соответствующих теорий или рациональности. Неправильный выбор условий процесса концентрирования может оказать неблагоприятное воздействие на органолептические и питательные свойства конечного продукта и/или привести к увеличению производственных затрат. Применяется широкий спектр методов концентрирования фруктовых соков, часто основанных на термическом испарении (выпаривании), сублимационной или вакуумно-импульсной сушке, мембранной фильтрации/дистилляции, прямом/обратном осмосе. Выбор способа концентрирования зависит исключительно от природы и состояния сока и степени концентрирования.

 

Выпарной котел

Это самые простые и самые старые типы испарителей, но они до сих пор часто используются для концентрирования соков, соусов, джемов и кондитерских изделий из-за их легкой установки,­  масштабируемости, технического обслуживания и меньших капитальных затрат. Эти испарители представляют собой полусферические корпуса (чаны, часто изготавливаемые из нержавеющей стали), которые нагреваются за счет пара или перегретой воды. Во время работы потоки пара движутся вокруг сосуда через пространство между внешней и внутренней чашами при несколько более высоком давлении, передавая тепло упариваемому соку. Температура фруктового сока повышается за счет теплопроводности, и вода испаряется. Концентрированные соки сбрасываются через выходное отверстие на дне чана; в противном случае его можно периодически наклонять для подачи концентрированного продукта в технологический поток. Несмотря на то, что с ними очень легко обращаться, такие испарители подходят только для выпаривания термически стабильных продуктов.­

 

Вакуум-выпарной аппарат

Концентрация сока кипячением в вакууме для испарения определенной части природной воды является единственным методом, пригодным для промышленного производства концентратов фруктовых соков. Выпарные аппараты с мешалкой подходят для концентрирования фруктового сока или пюре для приготовления концентрата или пасты. Эти испарители часто изготавливаются в виде цилиндра с верхней и нижней полусферическими крышками из нержавеющей стали. Такие выпарные аппараты также комплектуются якорными и лопастными мешалками. В качестве теплоносителя используется пар или горячая воды, которые находятся в паровой рубашке нижнего кожуха. Пары воды, удаляемые из продукта, конденсируются в конденсаторе. Закрытые выпарные аппараты работают под вакуумом, поэтому вода из сока испаряется в диапазоне температур около 40-70°C. Как и открытые чанные выпарные аппараты, они имеют сравнительно небольшую производительность, но отлично подходят для малых и средних современных технологичных производств пищевой, косметической и фармацевтической промышленности.

Закрытый выпарной аппарат с мешалкой, работающий под вакуумом, поставляется в составе линии для производства водно-спиртовых экстрактов из лекарственного и плодово-ягодного сырья.


Выпарная установка

Вакуумно-выпарная установка (выпарная станция) – это оборудование для термического удаления части воды из фруктовых соков в условиях вакуума при температурах, ниже температуры кипения воды при атмосферном давлении.

Выпаривание можно проводить порциями или непрерывно для получения требуемых концентрированных жидкостей, поддающихся перекачиванию.­

В однокорпусных термических испарителях теплоносителем обычно является пар или водяной пар, поэтому для испарения 1 кг/ч воды потребуется 1 кг/ч свежего пара. С другой стороны, многоступенчатые выпарные установки (испарители) используют соковые пары с предыдущей стадии в качестве теплоносителя для выпаривания воды из сока при более низкой температуре. (Эта архитектура зарубежом известна как «эффект»). Таким образом, «многоступенчатые» испарители были разработаны для эффективного использования тепловой энергии. В многокорпусном испарителе сок обрабатывается в несколько этапов, каждый из которых проходит при более низком давлении, чем предыдущий, или занимает большую площадь поверхности. Поскольку температура кипения воды уменьшается с уменьшением давления или скорость испарения увеличивается с увеличением площади поверхности, пары, выкипевшие на одной ступени, можно использовать для испарения на следующей.­­

В целом разница температур на каждый следующий «эффект» уменьшается. Следовательно, поверхности испарения подбираются и давления в отдельных «эффектах»­ регулируются для достижения требуемой скорости испарения. Поскольку фруктовые соки содержат деликатные питательные вещества, такие как термолабильные витамины и флавоноиды, испарители должны быть сконструированы таким образом, чтобы обеспечить желаемое испарение воды за счет минимальной термической обработки сока. Кипячение сока в условиях вакуума достигается при гораздо более низкой температуре, чем при нормальных атмосферных условиях.­

 

Рекомпрессия пара

Испарители на основе термической рекомпрессии пара являются энергоэффективными. Они откачивают пары первого «эффекта» (термокомпрессии) для повторного использования для нагревания. Эти испарители редко используются для концентрирования фруктового сока и в основном применяются для опреснения воды. Основным преимуществом парокомпрессионных испарителей является то, что они работают с более высокой экономией пара, т.е. двухступенчатый испаритель будет потреблять на 33% меньше пара, чем обычный испаритель. На практике лишь небольшая часть паров из испарителя сжимается в термокомпрессоре, а остальные конденсируются в следующем корпусе или конденсаторе. Термокомпрессор обычно применяется в однокорпусном испарителе или во время первого такта двух- или трехкорпусного испарителя для снижения расхода энергии. По сравнению с механической рекомпрессией испарители с термической рекомпрессией более применимы к жидкостям с низким повышением температуры кипения и низкими и умеренными перепадами температур в теплообменнике для минимизации степени сжатия.

 

Выпарной аппарат с восходящей или падающей пленкой

В пластинчатых испарителях с поднимающейся или падающей пленкой тонкие пленки фруктового сока поднимаются или спускаются по пластинами, что позволяет процессу испарения происходить быстрее при более низких температурах. Эти типы  испарителей в основном используются там, где выпариваемый фруктовый сок не может выдерживать длительное воздействие повышенных температур. Последняя форма этих испарителей состоит из трубчатого теплообменника с латерально или концентрически расположенным центробежным сепаратором. Во время работы сок подается на верхнюю часть нагревательных трубок и непрерывно распределяется тонкими пленками, падая вниз. Пленки, падающие вниз, быстро испаряются и, наконец, отделяются в центробежном каплеуловителе на дне. Следует следить за тем, чтобы все трубки были равномерно сбрызнуты соком, иначе на тонкой пленке образуются сгустки и пятна (пригары). Этот тип выпарного аппарата используется для переработки сока, где требуется малое время пребывания и температура ниже 90°C.­

Есть несколько модификаций пленочных испарителей. Например, пластинчатые испарители обеспечивают более высокую скорость испарения при более коротком времени пребывания и широко используются для термочувствительных продуктов. Скребковые испарители часто используются для концентрирования высоковязких продуктов, таких как томатное пюре.

 

Криоконцентрирование (криоконцентрация)

Концентрирование фруктового сока — это способ уменьшить объем сока, чтобы избежать затрат на транспортировку и хранение. Считается, что криоконцентрация является эффективным способом обезвоживания биологических материалов без нарушения их целостности. Этот метод включает удаление чистой воды в виде кристаллов льда при температуре ниже нуля и особенно подходит для концентрирования или разделения термочувствительных биологических соединений, таких как витамины, белки, антоцианы и другие полифенолы, ликопин и ароматические соединения.

Одноступенчатая установка концентрирования состоит из кристаллизатора и промывной колонны. Кристаллизатор представляет собой большой сосуд с поверхностными теплообменниками, часто заключенными в капсулу с охлаждающими змеевиками или циркулирующим хладагентом. Внешние стенки охлаждаются циркулирующим хладагентом для образования льда и роста кристаллов, происходящих внутри кристаллизатора. Обеспечивая достаточное время пребывания, кристаллы льда растут до оптимальных размеров для эффективного разделения. В промывной колонне концентрированная жидкость эффективно отделяется от кристаллов льда. Слой спрессованных кристаллов льда промывают растворяющимся льдом для удаления всех следов концентрированной жидкости. Криоконцентрация гарантирует, что в концентрате останутся все исходные характеристики исходного сырья. В отличие от термического испарения, криоконцентрация практически не влияет на вкус, аромат, цвет или питательные вещества сокосодержащих продуктов. Кроме того, уровень концентрации, который может быть достигнут при замораживании, выше, чем при обратном осмосе, но ниже, чем при кипячении в вакууме. Однако из-за очень высоких капитальных затрат, сложного контроля роста кристаллов льда в течение длительного времени (ограничение производительности), большого потребления энергии из-за безостановочного вращения скребковых лезвий и потерь твердых частиц из-за того, что сок «цепляется» за кристаллы льда, популярность криоконцентрирования мала. Этот метод обычно применяется для ценных соков или экстрактов.

 

Установка мембранной фильтрации

Продолжающийся в настоящее время энергетический кризис во всем мире побудил промышленников и ученых-пищевиков пересмотреть методы обезвоживания и придумать энергоэффективную технологию концентрирования, известную как технология мембранной фильтрации. Она вызывает относительно меньшую потерю питательных свойств, особенно витаминов и фитонутриентов.

Одной из многообещающих альтернатив мембранной технологии является обратный осмос, но он не может удовлетворить концентрации, обычно превышающую 25—30° по шкале Брикса. Вторым недостатком является малый срок службы мембран. Мембраны приходится часто подвергать мойке от загрязнений продуктом, из-за чего они быстро выходят из строя. Третий, самый существенный недостаток – высокая стоимость мембранных элементов.

 

Установка мембранной дистилляции

Мембранная дистилляция — это недавно внедренный процесс, в котором используется микропористая гидрофобная мембрана для разделения двух водных растворов, поддерживаемых при разных температурах. В этом методе поток чистой воды движется из раствора с более высокой температурой в раствор с более низкой температурой. Ключевой особенностью этого потока является то, что он протекает при атмосферном давлении и продолжается при температурах, значительно более низких, чем точки кипения обоих растворов. Мембраны обычно состоят из политетрафторэтилена, поливинилдифторида и полипропилена. Тонкие мембраны с большей пористостью, выполненные в виде спиральной намотки или полого волокна, обеспечивают более высокую скорость потока. Поскольку мембранная дистилляция происходит при обычном давлении и температуре, значительно более низких, чем при обычном выпаривании, эта методология может быть эффективно применена для концентрированных соков, чувствительных к высокой температуре и высокому осмотическому давлению. Концентрация фруктового сока, рабочая температура, скорость потока и вязкость сока влияют на поток пермеата. Использование мембран с открытой волокнистой структурой обеспечивает относительно хорошее удержание летучих ароматизаторов в сравнении с мембранами с дискретными порами.­

 

Концентрирование прямым осмосом

Концентрация прямым осмосом является еще одним популярным дополнением к мембранному процессу, который работает при низкой температуре и давлении и способен сохранять первоначальный вкус и органолептические характеристики фруктовых соков. При концентрировании прямым осомосом градиент осмотического давления устанавливается между фруктовым соком и раствором осмотического агента, поддерживаемого через полупроницаемую мембрану, поэтому вода перетекает из сока в гигроскопичный, нетоксичный, инертный осмотический агент (раствор высокого осмотического давления), не влияющий на вкус, цвет, или запах сока. Как правило, твердые вещества с меньшей молекулярной массой, когда они присутствуют в более высоких концентрациях, обеспечивают более высокое осмотическое давление. В этом контексте в качестве осмотических агентов часто используются хлорид натрия, тростниковая патока, кукурузный сироп, сахароза или глицерин. На практике растворы осмотических агентов должны обеспечивать осмотическое давление выше, чем концентрированный фруктовый сок. Например, кукурузный сироп на основе фруктозы/глюкозы (примерно 74° по шкале Брикса) часто используется в качестве осмотического агента для быстрого турбулентного потока без слишком большого перепада давления и поляризации концентрации, а также с относительно более длинной зоной контакта с мембраной без загрязнения.­

Повышение температуры сырья ускоряет трансмембранный поток. Технология эффективно применялся для концентрирования ананасового сока до 60°Brix при комнатной температуре.­

 

Концентрация обратным осмосом

Явление естественного течения растворителя из раствора с низкой концентрацией растворенного вещества в раствор с высокой концентрацией через полупроницаемую мембрану, препятствующую прохождению растворенных веществ, но позволяющую растворителю проходить сквозь нее, называется осмосом. Когда давление, действующее на раствор с высоким значением Брикса, превышает осмотическое давление, растворитель движется в обратном направлении через полупроницаемую мембрану. Точно так же, когда давление, приложенное к соку значительно превышает осмотическое давление, вода, содержащаяся в соке, движется в противоположном направлении через полупроницаемую мембрану. Удаление воды из сока приводит к концентрированию сока. С механистической точки зрения для переноса растворенных веществ и воды через мембрану обратного осмоса приняты две теории, т. е. теория преимущественной сорбции и диффузии раствора. Согласно первой теории растворенное вещество и растворитель проходят через мембрану путем диффузии, тогда как вторая теория предполагает, что растворенное вещество и растворитель сначала адсорбируются на поверхности мембраны, прежде чем пройти через мембрану. В целом, по мере удаления воды и отторжения растворенного вещества и накопления его на поверхности мембран поток воды падает из-за увеличения осмотического давления сырья и концентрационного поляризационного воздействия. Они считаются основными факторами, вызывающими ухудшение потока. Эти препятствия могут быть устранены путем изменения рабочих условий, таких как давление подачи, концентрация, температура, скорость поперечного потока, а также путем создания турбулентности, обратной промывки/промывки и импульсного потока.­­

 

Примеры концентрирования

Фруктовые соки, такие как яблочный и виноградный, жидкие по своей природе, и их можно концентрировать в пять-семь раз. Приблизительно из 100 кг сока прямого отжима можно получить 15–20 кг концентрированного сока. Фруктовые соки, содержащие больше пектиновых соединений и клетчатки, по своей природе вязкие, и их можно концентрировать только в два-три раза.

Яблочный сок очень чувствителен к теплу, поэтому для концентрирования сока в основном используются методы многоступенчатого выпаривания или криоконцентрации с системами извлечения эссенции. В многокорпусном испарителе яблочный сок с 10—12 °Bx выпаривают до 20—25 °Bx при температуре около 90°С и извлекают аромат методом фракционной перегонки. Концентрат с 25 °Bx далее упаривают до 40—45 °Bx, повышая температуру до 100°С. На третьем этапе концентрат с 45 °Bx доводят до 45°C и упаривают до 50—60 °Bx при пониженном давлении. Наконец, концентрат дополнительно упаривают до 70—71° по шкале Брикса, поддерживая сок при температуре 45°С. Конечный продукт охлаждают до 5°C и стандартизируют до 70° Bx перед окончательной упаковкой.­ 

О производстве соковых концентратов

Концетрирование сока

Фруктовые соки содержат высокий процент воды, который обычно составляет от 80% до 90%. Высокое содержание воды отрицательно влияет на изменения сока при переработке и хранении, а также значительно увеличивает затраты на хранение и транспортировку сока. Наиболее заметны изменения в аромате фруктовых соков, который в большей или меньшей степени теряется, несмотря на тщательную обработку и хранение. Эти проблемы в производстве фруктовых соков решаются за счет концентрирования фруктовых соков. Концентрированные фруктовые соки получают путем физического отделения определенного количества воды от фруктового сока. Сок жидкий по своей природе и может быть концентрирован в пять-семь раз. Сутью процесса концентрирования является удаление воды, при этом изменение питательных и органолептических свойств продуктов должно быть сведено к минимуму. За счет удаления воды объем сока уменьшается, что снижает требования к емкостям для хранения и снижает транспортные расходы. Кроме того, концентрированный фруктовый сок легче защитить от нежелательных изменений. В процессе концентрирования аромат фруктовых соков отделяют и хранят в специальных условиях отдельно от фруктового сока. Активность воды фруктового сока снижается при концентрировании от 0,73 до 0,94, а полученный фруктовый концентрат в значительной степени стабилизирован в химическом и микробиологическом отношении. Таким образом, при концентрировании фруктового сока сохраняется типичный аромат сока, и в то же время многократно сокращается объем хранения и транспортировки концентрированного сока.

Во избежание потери аромата при концентрировании, перед осветлением яблочный сок деароматизируют путем частичного концентрирования сока. Яблочный аромат легко отделяется и для выделения аромата необходимо выпарить около 20% исходного объема сока. При деароматизации вторичные пары с ароматическими компонентами отделяются и направляются в ректификационную колонну, а затем на дальнейшую очистку и конденсацию, а деароматизированный сок поступает на концентрирование. Ароматизатор концентрируют до степени концентрации от 1:100 до максимум 1:200 и хранят при температуре около 0°C.

Наиболее экономичным и широко применяемым в настоящее время методом концентрирования фруктовых соков является отделение воды выпариванием в вакууме. Применение замораживания и концентрации обратным осмосом не имеет существенного применения в промышленных масштабах. Физико-химические свойства, такие как общее содержание фенольных соединений и антиоксидантная активность, успешно сохраняются при использовании осмотической концентрации для концентрирования соков.

Яблочный сок концентрируется примерно до 70 Bx. Поскольку большинство соков чувствительны к нагреванию, выпаривание обычно проводят при пониженном давлении (вакууме), в результате чего снижается температура кипения продукта и выпаривание происходит при более низких температурах. Сок концентрируют в вакууме в одноступенчатом, двухступенчатом или многоступенчатом выпарном аппарате. Температура концентрирования обычно составляет 40—45°С, а если она выше на первой фазе двухступенчатого или многоступенчатого выпаривания, то время должно быть очень коротким, от 10 до 30 с. В низкотемпературных испарителях температура испарения на первой ступени составляет около 18°С, а на второй 33°С. Чем ниже температура и меньше время, тем безопаснее сохранить цвет и получить концентрированный сок с приятным вкусом. Пастеризацию концентрированного сока проводят в проточном тарельчатом или трубчатом пастеризаторе при температуре 85°С в течение 30—40 с. с, или при более высокой температуре 100°С—105°С всего за 10 с, а накопительные емкости или потребительская упаковка заполняются в асептических условиях.

О производстве яблочного сока можно почитать здесь

Купить выпарную установку для концентрирования сока: +7-906-968-1922

Добыча масла зародышей пшеницы

Жиры и масла играют важную роль в пищевой промышленности и являются неотъемлемой частью питания человека. Растительные масла содержат жирорастворимые витамины, такие как витамины A, D, E и K, а также являются источником незаменимых ненасыщенных жирных кислот, которые не могут быть синтезированы человеческим организмом. Чтобы удовлетворить потребности в питании, постоянно ведется поиск новых ресурсов растительного масла в качестве источника этих витаминов и незаменимых жирных кислот.

Масло зародышей пшеницы имеет самое высокое содержание токоферола среди всех растительных масел, примерно до 2500 мг/кг. Масло зародышей пшеницы также высоко ценится за высокое содержание ненасыщенных жирных кислот: в нем около 80 %, состоящих в основном из линолевой (18:2) и линоленовой (18:3) кислот, обе из которых имеют большое значение в метаболизме человека и не могут быть синтезированы организмом. Они являются предшественниками группы гормонов, называемых простагландинами, которые играют важную роль в мышечных сокращениях и в ликвидации воспалительных процессов в организме. Кроме того, линолевая кислота способствует выведению холестерина и является предшественником фосфолипидов клеточных мембран.

Зародыши пшеницы являются побочным продуктом мукомольной промышленности. Зародыш составляет около 2-3% зерна пшеницы и в достаточно чистом виде может быть отделен от зерна в процессе помола. Зародыши пшеницы содержат около 11 % масла. Масло зародышей пшеницы используется в таких продуктах, как продукты питания, средства биологической борьбы с насекомыми, фармацевтические препараты и косметические составы. Полиненасыщенные жирные кислоты и биологически активные соединения склонны к окислению и деградации в условиях, используемых для традиционных методов экстракции и рафинации пищевых масел.

Экстракция растворителем является распространенным методом экстракции масел из растительного сырья. В последние годы повышенное внимание уделяется сверхкритической флюидной экстракции как важной альтернативе традиционным методам. Сверхкритические флюиды обладают регулируемыми характеристиками экстракции благодаря их плотности, которую можно регулировать изменением давления или температуры. Кроме того, другие свойства, такие как низкая вязкость, высокая диффузионная способность и низкое поверхностное натяжение, усиливают перенос массы

растворенного вещества изнутри твердой матрицы сырья. Сверхкритический диоксид углерода будучи нетоксичным негорючим, недорогим и легко отделяемым от экстрактов, становится наиболее часто используемым экстрагентом в пищевой и фармацевтической промышленности. Кроме того, низкая критическая температура углекислого газа позволяет извлекать термолабильные соединения без их деградации.

Средний выход масла зародышей пшеницы около 10% можно получать при сверхкритической СО2-экстракции при 350 бар, при этом состав жирных кислот и токоферола экстрактов особо не зависит от давления экстракции.  

Перспективные продукты СО2-экстракции

Продукты сверхкритической СО2-экстракции

Соединения, полученные в результате сверхкритической экстракции CO2, включают масла высокой чистоты, сохраняя при этом нежные ненасыщенные жирные кислоты омега-3, драгоценные эфирные масла, ароматные соединения, каротиноиды. Этот способ также можно использовать для нерастворимых в воде биоактивных фитосоединений, таких как липофильные флавоноиды и фенолы.


Технология и продукты СО2-экстракции

Включают натуральный релаксант из коры магнолии, известный как хонокиол, гингеролы из имбиря, альфа- и бета-кислоты хмеля, кавалактоны из корня кавы, ресвератрол, дитерпены розмарина, высококонцентрированные флавоноиды гинкго и катехины из отходов кожицы арахиса.

Эта технология позволяет получить высокоочищенные алкалоиды с сильным физиологическим действием. Болеутоляющие, не вызывающие привыкания алкалоиды матрин и оксиматрин из софоры желтеющей могут иметь высокую концентрацию без типичной потребности в токсичных углеводородных растворителях.  Семена лотоса содержат извлекаемые CO2 алкалоиды, такие как нуциферин, которые обладают успокаивающим и стимулирующим эректильным действием. Розавин, гидроксицинмат, может быть извлечен в более высоких дозах, чем с водой или спиртом, и может использоваться для получения антидепрессантов и получения энергии.

С помощью этого процесса можно экстрагировать высоконенасыщенные хрупкие масла из таких источников, как семена граната, ягоды облепихи, семена льна, чиа, огуречник, криль и примула вечерняя, чтобы получить масла без остатков гексанового растворителя и с очень низким содержанием пероксидов.

Масла, отжатые экспеллерным прессом, часто подвергаются сильному нагреву от трения и давления, однако экстракция CO2 при более высоком давлении строго контролируется в его тепловых условиях. Кроме того, поскольку CO2 является инертным, нереактивным газом, нет шанса, что может произойти окисление, когда весь кислород будет удален из реакционного сосуда.

В пищевой промышленности сверхкритическая CO2-экстракция очень удобна для улавливания биоактивных соединений в тех случаях, когда требуется низкотемпературная обработка, высокая эффективность биомассы и отсутствие растворителя в конечном продукте. Тепловой обработки можно избежать из-за убивающего воздействия высокого давления CO2 на микробы, что делает экстракты безопасными для пищевых продуктов, напитков и косметических целей.


Примеры технологий пищевой промышленности, в которых используется сверхкритическая СО2-экстракция

  • эффективное удаление кофеина из зеленого и черного чая и зеленых кофейных зерен;
  • производство экстрактов хмеля;
  • ароматы трав и специй;
  • экстракция и фракционирование пищевых масел;
  • тщательное удаление загрязнений.


Соединения эфирных масел, такие как цитраль, обладающие биоактивным действием на мозг, могут быть извлечены из мелиссы ( Melissa officinalis ), лемонграсса и других трав типа лимона. Свежее масло желтого имбиря, богатое неокисленными ароматическими компонентами, включая зингерибен и цитрусовые компоненты, возможно только при использовании CO2-экстракции.

Многие экономически производимые побочные продукты могут быть получены в пищевой промышленности. Ликопин извлекается из семян томатов и побочных продуктов кожуры, что делает его более экономичным. Ликопин используется для здоровья простаты и сердечно-сосудистой системы, он блокирует ультрафиолетовое излучение и увлажняет кожу. Другие биоактивные вещества, присутствующие в семенах и кожуре томатов, включают токотриенолы δ, γ, α и токферолы витамина E δ, γ и α, которые также жизненно важны для здоровья сердца.

Другие эфирные масла с профилями, более похожими на природные источники, чем паровая дистилляция, включают масла перечной мяты, масло корицы, ароматические вещества жареного арахиса, розмарина, лаванды, апельсина, ромашки и т. д. Отдельные компоненты могут быть получены из этих эфирных масел на разных этапах и параметры процесса экстракции СО2. Например, масло ромашки содержит бледно-голубые масляные компоненты азулен и хамазулен, обладающие противовоспалительными свойствами кожи, которые можно изолировать.

Свежее масло желтого имбиря имеет много применений для ароматизации продуктов питания / напитков, косметических ароматизаторов, мыла, свечей, ароматерапии. Его многочисленные медицинские применения включают следующее: обезболивающее, противорвотное, антисептическое, бактерицидное, ветрогонное, отхаркивающее, жаропонижающее, слабительное, стимулирующее и т.д. Облегчает течение следующие заболеваний: желудочные, карбункулы, тошнота, похмелье, морская болезнь, простуда и грипп, катар, заложенность носа, кашель, синусит, язвы на коже, боль в горле, диарея, колики, судороги, озноб и жар. Он также используется для снятия стресса, депрессии, психического стресса, истощения, головокружения, беспокойства, импотенции и лечения преждевременной эякуляции.

Великолепным на установках СО2-экстракции получается масло облепихи, масло косточек граната, масло имбиря, хонокиол и другие продукты.